Syntactic/Semantic Structures for Textual Entailment Recognition
نویسندگان
چکیده
In this paper, we describe an approach based on off-the-shelf parsers and semantic resources for the Recognizing Textual Entailment (RTE) challenge that can be generally applied to any domain. Syntax is exploited by means of tree kernels whereas lexical semantics is derived from heterogeneous resources, e.g. WordNet or distributional semantics through Wikipedia. The joint syntactic/semantic model is realized by means of tree kernels, which can exploit lexical relatedness to match syntactically similar structures, i.e. whose lexical compounds are related. The comparative experiments across different RTE challenges and traditional systems show that our approach consistently and meaningfully achieves high accuracy, without requiring any adaptation or tuning.
منابع مشابه
WHU at TAC 2009: A Tri-categorization Approach to Textual Entailment Recognition
This paper describes our system of recognizing textual entailment for RTE-5 challenge at TAC 2009. We propose a textual entailment recognition framework and implement a system of classification which takes lexical, syntactic and semantic features as considered. To improve the performance, some lexical-semantic resources and web knowledge bases are also incorporated in the system. Official resul...
متن کاملThe Effect of Semantic Knowledge Expansion to Textual Entailment Recognition
This paper studies the effect of semantic knowledge expansion applied to the Textual Entailment Recognition task. In comparison to the already existing approaches we introduce a new set of similarity measures that captures hidden semantic relations among different syntactic categories in a sentence. The focus of our study is also centred on the synonym, antonym and verb entailment expansion of ...
متن کاملChinese Textual Entailment Recognition Enhanced with Word Embedding
Textual entailment has been proposed as a unifying generic framework for modeling language variability and semantic inference in different Natural Language Processing (NLP) tasks. By evaluating on NTCIR-11 RITE3 Simplified Chinese subtask data set, this paper firstly demonstrates and compares the performance of Chinese textual entailment recognition models that combine different lexical, syntac...
متن کاملChinese Textual Entailment Recognition Based on Syntactic Tree Clipping
Textual entailment has been proposed as a unifying generic framework for modeling language variability and semantic inference in different Natural Language Processing (NLP) tasks. This paper presents a novel statistical method for recognizing Chinese textual entailment in which lexical, syntactic with semantic matching features are combined together. In order to solve the problems of syntactic ...
متن کاملLearning Parse-Free Event-Based Features for Textual Entailment Recognition
We propose new parse-free event-based features to be used in conjunction with lexical, syntactic, and semantic features of texts and hypotheses for Machine Learning-based Recognizing Textual Entailment. Our new similarity features are extracted without using shallow semantic parsers, but still lexical and compositional semantics are not left out. Our experimental results demonstrate that these ...
متن کامل